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Abstract
Machine learning in non-destructive testing (NDT) offers significant potential for efficient daily data analysis and uncov-
ering previously unknown relationships in persistent problems. However, its successful application heavily depends on the
availability of a diverse and well-labeled training dataset, which is often lacking, raising questions about the transferability
of trained algorithms to new datasets. To examine this issue closely, the authors applied classifiers trained with laboratory
Ground Penetrating Radar (GPR) data to categorize on-site moisture damage in layered building floors. The investigations
were conducted at five different locations in Germany. For reference, cores were taken at each measurement point and labeled
as (i) dry, (ii) with insulation damage, or (iii) with screed damage. Compared to the accuracies of 84 % to 90 % within
the laboratory training data (504 B-Scans), the classifiers achieved a lower overall accuracy of 53 % for on-site data (72
B-Scans). This discrepancy is mainly attributable to a significantly higher dynamic of all signal features extracted from on-
site measurements compared to laboratory training data. Nevertheless, this study highlights the promising sensitivity of GPR
for identifying individual damage cases. In particular the results showing insulation damage, which cannot be detected by
any other non-destructive method, revealed characteristic patterns. The accurate interpretation of such results still depends
on trained personnel, whereby fully automated approaches would require a larger and diverse on-site data set. Until then,
the findings of this work contribute to a more reliable analysis of moisture damage in building floors using GPR and offer
practical insights into applying machine learning to non-destructive testing for civil engineering (NDT-CE).

Keywords GPR ·Material moisture · Building floor · Classification ·Machine learning

1 Introduction

Non-destructive testing in civil engineering (NDT-CE) often
involves examining large areas, including various local inci-
dents of damage. These examinations produce a significant
amount of data that require thorough analysis by experi-
enced personnel. Applying machine learning methods could
help to not only speed up these processes, but may also pro-
vide deeper insights into the data structure and uncover yet
unknown relationships within NDT-CE. However, the effec-
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tive use of these emerging techniques depends on a rich and
diverse training data set. In contrast to successful examples
in computer vision applications like autonomous driving or
facial recognition, the availability of labeled non-destructive
testing (NDT) data is often limited, which poses the risk of
an inadequate representation of the space of possibilities [1].
Unfortunately, referencing training data for machine learn-
ing is not always straight forward for NDT-CE. To address
these challenges, this work creates referenced training data
within laboratory conditions to classify new, also referenced
on-site measurements. The results of this validation aim to
give practical insight into the application ofmachine learning
in NDT-CE. Thereby, the study focuses on moisture damage
in layered building floors, which present a research topic of
relevant interest.
From 2003 to 2022, the yearly costs of pipe water damage in
Germany increased by 163 % to a total of 3.8 billion Euros
[2]. Often, the actual extent of a moisture damage is not fully
recognized, leading to costly deterioration of building struc-
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tures. The additional risk of mold also threatens the health
of residents [3, 4], which highlights the need for a quick and
accurate diagnosis of damage.
For pipe water damage, building floors are the most affected
structure, as they either contain the broken pipe systemwithin
their insulation or get flooded from above. This leads to two
primary types of damage: wet insulation or wet screed.Mois-
ture barriers, usually made of polyethylene foils, generally
prevent water from moving between these layers. However,
in the rare case of a poor functionality, also both layers may
be damaged at the same time. Generally, knowing the pres-
ence and distribution of these different types of damage is
crucial for performing efficient and effective repairs.
Most common non-destructive moisture measurement meth-
ods [5, 6], like resistivity-based, capacitive, or thermal
methods, are not adequate for an in-depth examination of
building floors. They typically yield moisture information
only for surface areas andmay be hindered by the layer struc-
ture of the floor. Furthermore, floor structures often include a
layer on top of screed and insulation (carpet, laminate, etc.),
which can disturb the accuracy of the applied method. In par-
ticular, the moisture condition of the insulation, which is the
deeper layer, is not detected by most methods and presents
a special challenge in moisture investigations on building
floors.
A suitable exception is the Neutron probe [7], as it can reach
penetration depths of almost 30cm. However, it only gives
integral measurements of the investigated area and cannot
provide detailed information about different depths. Further,
it is not possible to distinguish between chemically bound
and liquid water, making it necessary to extract cores, which
is time-consuming and costly, to calibrate the data.
So far, Ground Penetrating Radar (GPR) is the most promis-
ing non-destructive method to provide the important depth
information necessary to classify moisture damage in build-
ing floors. Commonly used in geophysics [8, 9], it is
increasingly applied in civil engineering (CE) [10, 11], also
formoisturemeasurements on buildingmaterials like asphalt
[12, 13], concrete [14–17], bricks [18, 19], and screed [20]. A
short overview about the principle ofmoisturemeasurements
with GPR is given in the following section.

1.1 Moisture Measurement with GPR

By transmitting and receiving electromagnetic (EM) waves,
GPR represents a suitable and sensitive method for material
moisture measurement. The key factor in this process is the
material’s relative permittivity εr [21, 22], which is greatly
affectedby the amount ofwater presentwithin an investigated
area. This is due to the significant difference in εr between
dry building materials like concrete, which ranges from 4 to
10 [23], and water, which has a value around 81 [24]. As a
result, higher moisture levels lead to increased relative per-

mittivities in a medium, with wet concrete showing values
between 10 and 20. These changes greatly influence the prop-
agation characteristics of EM waves, leading to noticeable
lower amplitudes, longer travel times and lower frequencies
of the signal received. By analyzing these signal character-
istics, it is possible to make informed estimates about the
moisture content in the material. A specific review is given
in [25], providing further literature about various applications
of GPR for moisture measurements in CE.

1.2 Preceding Laboratory Study

In a previous study by Klewe et al. [26], a laboratory investi-
gation was carried out to examine common damage cases in
floor constructions using GPR. Here, a modular specimen,
shown in Fig. 1, was used to enable an interchangeable test
setup.With that, the diverse practice of real floor construction
was modeled by varying the layer thicknesses and materials
of the screed and insulation layer, as listed in Table 1.
The experiment simulated three scenarios for classification:
(i) dry, (ii) insulation damage, and (iii) screed damage. The
variety of materials and thicknesses (Table 1) allows for the
simulation of 84 different floor constructions for each of the
three scenarios. This resulted in a data set of 252 measure-
ments or 504 B-scans (with each measurement consisting of
two orthogonal survey lines). This data set was then used to
develop a strategy for identifying different types of damage.
It involved the extraction of significant features to train var-
ious classifiers, which are also employed in this study and
will be briefly discussed later in Sect. 2.2.
The previous study achieved high classification accuracies,
ranging from 84 % to 88 %. This demonstrated the potential
and sensitivity of GPR to identify different moisture damage
scenarios in building floors. However, the direct applicability
of these methods and findings to real damage cases in actual
floor constructions remains anopenquestion.Addressing this
question is the primary focus of the following on-site study.

2 Methods

2.1 On-Site Measurements

The on-site investigations of real floor damages were carried
out at five different locations in Germany. The sites included
a recreation center, a restaurant, a community center, a stu-
dent residence, and a parking garage. Asmatter of clarity, the
measurements from these locations are referred to by their
respective cities: (i) Berlin, (ii) Grossenseebach, (iii) Nürn-
berg, (iv) Pegnitz, and (v) Wunsiedel.
A consistent procedure was implemented across all the loca-
tions: a grid of numbered measurement points (MPs) was
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Fig. 1 Modular test specimen with screed, insulation, and concrete base layer (a, b) and the simulation of an insulation damage by adding water
to the setup (c) [27]

Table 1 Used materials and layer thicknesses for the screed (top) and
insulation layer (bottom) [26]

Material Thickness D [cm]

Cement screed (CT) 5, 6, 7

Anhydrite screed (CA) 5, 6, 7

Expanded polystyrene (EP) 2, 5, 7, 10

Extruded polystyrene (XP) 2, 5, 7, 10

Glass wool (GW) 2, 6, 10

Perlites (PS) 2, 6, 10

marked in each room under investigation. Depending on the
room layout and access, MPs spacing ranged from approx-
imately 1.5 m to 3m. As shown in Fig. 2 a, each MP was
located at the crossing point of two orthogonal GPR survey
lines (B-scans), 50cm long each. GPR data were collected
using a 2 GHz antenna and GSSI SIR 20 GPR system set
with a spatial sampling of 250 A-scans per meter (A-scans
spacing of 4mm) and to record over a time window of 11 ns
(512 temporal samples).

After conducting the GPR measurement, a core of 6.8 cm
diameter was extracted at each MP, reaching from the floor
surface to the bottom of the insulation layer, as shown in
Fig. 2 b. Screed and insulation materials were immediately
separated and stored in two plastic bags to prevent water
evaporation. Later, their moisture content was determined by
oven drying and weighing, following the Darr method [28].
The obtained values in wt% then provide a reference for the
GPR surveys.Here,moisture values exceeding 4% in cement
screed and 15 % in insulation indicated damage to these spe-
cific layers. This reference informationwas then used to label
each survey line (or B-scan) according to the actual damage
detected. If damages were found in both layers, which was
not included in the laboratory study, the measurement was
labeled as screed damage. This labeling was based on the

premise that the screed, being the top layer, would primarily
affect the emitted EM waves.

2.2 Feature Extraction

Thiswork aims to validate a laboratorymethod by applying it
on real damage cases. Therefore, the same features identified
in Klewe et al. [26] are used. A comprehensive overview
of the different features commonly used in GPR moisture
measurements is also given in [25]. The following section
gives a brief presentation of the strategy used within this
study:
GPR measurements on building floors typically reveal three
distinct wave phases, each originating from specific areas
within the structure. This is demonstrated by an typical A-
scan in Fig. 3 b. The direct wave (DW) travels the shortest
path from transmitter to receiver and is therefore mea-
sured first. Partly traveling over air and the surface, it is
sensitive to superficial screed moisture. The first reflected
wave (RW1) emerges from the screed-insulation interface,
while the second reflected wave (RW2) originates from the
insulation-concrete interface. RW1 is sensitive to both screed
and insulation damages, whereas RW2 is more influenced
by insulation moisture. The laboratory study summarized in
Sect. 1.2 identified the following five A-scan features used
to classify moisture damage in building floors:

• Feature F1: ADW - Amplitude of the direct wave [13–15]
• Feature F2: ARW2 - Amplitude of the 2nd reflection [13–
15]

• Feature F3: fRW2 - Dominant frequency of the 2nd reflec-
tion [18, 29]
(Short-time Fourier transform: hamming: hamming win-
dow size=1.29 ns; overlap=1.27 ns)

• Feature F4: ARW1/ADW - Ratio of the amplitudes of the
1st reflection and direct wave [16]
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Fig. 2 GPR survey lines (a) around a measurement point from which the reference core is extracted (b). Two 50cm radar survey lines are collected
with the SIR 20 from GSSI and a 2 GHz antenna [27]

• Feature F5: fRW1/ fDW - Ratio of the dominant frequen-
cies of the 1st reflection and direct wave

These features are influenced not only by moisture but also
by variables like layer thicknesses of screed and insulation,
and their respective materials. In on-site investigations, these
parameters are often unknown, making decisions based on
mere thresholds for these features impractical. Thus, the
variation of A-scan features within a single survey line (or
B-scan) is further analyzed, as depicted in Fig. 3. It was
observed in the laboratory that dry floor constructions exhibit
no deviations for a specific feature across an entire B-scan.
However, the presence of water affects the reflected waves,
causing variations as shownby an example of insulation dam-
age in Fig. 3 c. Statistical measures like standard deviation
and range were employed to convert the vectorial A-scan
features into scalar B-scan features (Fig. 3 d, effectively dis-
tinguishing damage cases within the laboratory data set. This
was achieved by training different classifiers, which shall
now be tested on the collected on-site data.

2.3 Classification

To evaluate the method transferability to practical scenarios,
this study utilizes classifiers trainedwith laboratory data from
the previous research mentioned in Sect. 1.2. The Python
scikit-learn library [30] is used to implement a multinomial
logistic regression (MLR), a random forest (RF), a sup-
port vector machine (SVM), and an artificial neural network
(ANN), all in their standard configurations (default parame-
ters only). Trials conducted during the previous study showed
that the selection of appropriate signal features had a much
greater impact on classifier performance than the adjustment

of specific model parameters. In addition, since all models
consistently achieved similar accuracy values in the labora-
tory study, there was no indication that selecting different
models or model parameters would yield significantly better
results.
Compared to the laboratory study, the training process was
slightly adjusted for the application on on-site data. Rather
than randomly splitting the data into training and test sam-
ples, groups of likely dependent measurements are defined
to serve as separate test data. Therefore, a specific material
(screed or insulation) with a certain thickness characterizes
each group. For example, all measurements with a 5cm EP
insulation or a 7cmCA screed are excluded from the training
data and utilized as test data. Given the variations in Table 1,
this results to a total of 20 groups. In the laboratory study,
almost all of the setups with 2cm insulation in the floor con-
struction contained no water in the measured area, as the
small amount of added water was trapped in the unmeasured
outer edges of the specimen.Elimination of these unrepresen-
tative measurements resulted in an improvement in accuracy,
so these cases are also removed here. Consequently, subsets
of 16 groups are used to train and test each of the four clas-
sifiers, leading to 64 trained models. Before training, data
standardization is conducted using the StandardScaler from
scikit-learn for mean removal and achieving unit variance.
This standardization is crucial to prevent any feature with
higher magnitude from exerting unreasonable influence.
The achieved mean accuracies of 84 % to 90 % by the clas-
sifiers were comparable to those from the preceding study,
which suggests a sufficient independence of test and train-
ing data when performing random splits. The challenge of
applying trained classifiers to entirely new data comes from
their limited ability to extrapolate beyond the scope of the
training data. The effectiveness of these classifiers depends
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Fig. 3 Procedure for extracting A- and B-scan features as described in [26] and [27]

on how well the training samples represent the full space of
possibilities. Since the training data set is derived from an
experimental program, it may not cover a sufficient range
within this space, leading to significant variance in predic-
tions for new, potentiallymore distant data points. To address
this problem, all 64 classifiers are used to evaluate the newly
obtained on-sitemeasurement data. Here, each classifier type
(MLR, RF, SVM, and ANN) constitutes a ’voting group’ of
16 models. The final classification is determined by the vot-
ing group that shows the highest consistency, defined as the
group with the highest number of identical predictions. This
approach, known as bootstrap aggregating (or bagging) [31],
is employed to ensure more stable and accurate classifica-
tions of unknown on-site data. As the laboratory data, the
on-site data undergoes standardization using the same Stan-
dardScaler that was fitted and used for the laboratory training
data.

3 Results

A total of 186 MPs (372 B-Scans) were collected from the
five on-site locations across Germany. The distribution of
these points was as follows: Berlinwith 29MPs, Grossensee-
bach with 33 MPs, Nürnberg with 44 MPs, Pegnitz with 48
MPs, and Wunsiedel with 32 MPs. Based on the analysis
of the extracted cores, the MPs were categorized, with 50
labeled as dry, 45 as having insulation damage, and 93 as
showing screed damage. This section will first provide an
overview of the general characteristics observed in the mea-
sured data, followed by a detailed analysis of the achieved
classification results.

3.1 On-Site Measurements

Figs. 4, 5, and 6 present representative on-site measurements
of building floors, each corresponding to one of the three
damage scenarios: dry, insulation damage, and screed dam-

age, respectively. Within each figure, two collected B-scans
are displayed, alongside their extracted A-scan features. For
each MP where a core was extracted, the layer thicknesses
andmoisture contents for both screed and insulation are noted
in the bottom right corner of each B-scan. Core positions are
indicated on each B-scan by light gray vertical bars.

Example a) in Fig. 4 shows a measurement labeled as
dry, similar to those collected in the laboratory study (also
depicted later in Fig. 11). The B-scan in this case exhibits
minimal horizontal deviations for DW, RW1 and RW2, sug-
gesting absence of water or seemingly uniform conditions in
the area under investigation. However, the extracted A-scan
features reveal variations in F2, F4, and F5, which include
all wave phases discussed in Sect. 2.2. This is in contrast
to the smoother and flatter patterns seen in the laboratory
data, hinting at a potentially higher heterogeneity in the on-
site material parameters, such as layer thickness or moisture
content. This hypothesis is further supported by the second
dry example in Fig. 4 b. Here, the B-scan displays more pro-
nounced horizontal variations, which are also reflected in the
A-scan features. Notably, the increase in travel time in the
latter half of the survey line could be attributed to either an
increase in screed thickness or a rise in screed moisture con-
tent. However, the concurrent decrease in the amplitude of
DW (indicated by the blue F1) suggests an increase in mois-
ture content rather than a change in thickness. This is because
DW is particularly sensitive to superficial screed moisture
and is not affected by the underlying layer thickness.

The core extracted from MP 31 in Nürnberg, as shown in
Fig. 5 a, successfully identified a damaged insulation with
a moisture content of 120 wt%. The corresponding GPR
measurement for this MP also shows notable amplitude fluc-
tuations for RW1 and RW2, while DW remains relatively
constant. Such attenuation patterns in RW1 andRW2 are typ-
ical for water presence in the insulation layer, which could
also be observed in the laboratory study. In contrast, the
GPR data from MP 36, while showing similar effects, are
not as pronounced as in MP 31. In addition to RW1 and
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Fig. 4 ExampleB-scans (top) and their respectiveA-scan feature charts
(bottom) collected on dry floors in Grossenseebeach. The light gray ver-
tical bar in the centre of the B-scans marks the location of the extracted

core. Thickness and moisture content of screed and insulation layers
are reported at the bottom right of the B-scans [27]

RW2, slight deviations are observed in DW. This variability
complicates the interpretation of the radar data, which could
be misinterpreted as either a dry condition or screed damage.
Nevertheless, the increased dynamics in features F2 and F4
from 20cm to 50cm, while F1 remains relatively unchanged,
suggest the likelihood of insulation damage.

Figure 6 shows two characteristic measurements from
floors with screed damage, each displaying relatively high
moisture contents of 7 wt%. A key indication in both cases
is the significantly attenuated DW, evident from the reduced
contrast between 1 ns and 2 ns in both B-scans. However,
this threshold-based amplitude feature is not directly cap-
turedby the applied feature extraction strategy,which focuses
on statistical measures across the horizontal axis. The dif-
ference in attenuation becomes apparent only when these
measurements are compared with dry reference MPs, like
those in Fig. 4. Without such comparisons, the observed pat-
terns could potentially be attributed to other factors, such
as a more attenuating floor cover or a lower gain setting in
the GPR system. Nonetheless, the integral measuring prin-
ciple of GPR reflections allows screed damage to impact all

wave phases under consideration. Consequently, variations
in every feature, as observed in both examples in Fig. 6, are
indicative of screed damage.
In addition to the inherent uncertainties in on-site moisture
measurements with GPR, several challenges were encoun-
tered during the investigations. A common issue was the
presence of floor heating systems, as illustrated in Fig. 7.
Located directly beneath the screed, these systems disrupt
the expected reflection of RW1, making it difficult to apply
the established analysis strategy. As a result, any measure-
mentswith clear signs of existing floor heatingwere excluded
from the dataset. Unfortunately, this was the case for nearly
all themeasurement points in Pegnitz,Wunsiedel, andBerlin,
leading to the exclusion of these data sets from subsequent
classificationmodel applications. However, it is worth noting
that in instances like those observed inWunsiedel, the visibly
increased attenuation associated with higher moisture levels
could still provide insight into screed damage. However, this
aspect was not further investigated within the scope of this
work.
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Fig. 5 ExampleB-scans (top) and their respectiveA-scan feature charts
(bottom) collected on floors with insulation damage in Nürnberg. The
light gray vertical bar in the centre of the B-scans marks the location

of the extracted core. Thickness and moisture content of screed and
insulation layers are reported at the bottom right of the B-scans [27]

Within the Grossenseebach measurements, an additional
complication arose froma screed reinforcementmesh in eight
MPs, which can be seen in Fig. 8. The hyperbolic reflection
patterns originating from this mesh resemble floor heating
but showmuch closer spacing. Due to the interference caused
by these metallic elements, all affected measurements were
excluded from the Grossenseebach dataset. In Nürnberg, the
presence of a steel beam crossing the survey line significantly
impacted the B-scans of sevenMPs, as shown in Fig. 9. Addi-
tionally, this beam was situated in a room lacking insulation
in the floor structure. Given that such a scenario was not
included in the laboratory study, the twelve MPs gathered in
this area were also excluded from the analysis.

3.2 Classification of On-Site Measurements

The analysis focused solely on on-site measurements from
Grossenseebach and Nürnberg, after excluding data affected
by screed reinforcement, steel beams, and absent insulation
layers. The refined data sets included 50 and 62 B-scans from

25 and 31 MPs in Grossenseebach and Nürnberg, respec-
tively. Feature extraction, as detailed in Sect. 2.2, was then
applied to these datasets. However, it was not always possible
to detect all five features in each measurement. In some B-
scans, highly attenuated or interfered wave phases hindered
clear separation or identification, leading to NaN-values for
the affected features. Consequently, additional 24 B-Scans
fromGrossenseebach and 16 fromNürnberg were discarded,
leaving 26 and 46 B-scans available for analysis.
This reduction in usable data highlights significant lim-
itations in automated classification of on-site GPR mea-
surements. Despite these challenges, the remaining mea-
surements underwent classification based on their extracted
features. Figure10 shows the achieved accuracies and con-
fusion matrices for both data sets. The overall accuracies of
46.2 % for Grossenseebach and 56.5 % for Nürnberg are sig-
nificantly below those achieved on the laboratory data, laying
between 84 % and 90 %. Such a difference often indicates
a problem with overfitting the training data [32]. The confu-
sionmatrices reveal that most measurements in both data sets
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of the extracted core. Thickness and moisture content of screed and
insulation layers are reported at the bottom right of the B-scans [27]
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were predominantly classified as screed damage. This trend
raises questions about the actual sensitivity and effectiveness
of the classification process. It remains unclear whether the
classification accurately reflects a high sensitivity for detect-
ing screed damage, or if the observed higher hit rate is merely

coincidental, influenced by the prevalence of screed damage
cases in the data sets.
When applied to new on-site data, the automatic classifi-
cation trained with laboratory data fell short of replicating
laboratory-level accuracy. The reasons behind this perfor-
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mance gapwill be explored in the subsequent section through
an in-depth analysis of the data sets. This examination will
focus on their limitations and pitfalls, but also on the oppor-
tunities they present for further investigation of moisture
damage in building floors using GPR.

4 Discussion

4.1 Laboratory Training Data

As stated above, the observed accuracy gap between training
and on-site test data suggests an overfitting of the models
to the laboratory data. Examining representative examples
from this training data can provide insights into the classi-
fiers decision-making process when applied to new on-site

data.
Fig. 11 presents typical measurements for the dry, insula-
tion damage, and screed damage cases from the laboratory
experiments. While the B-scans distinctly differ from each
other, the A-scan feature distributions reveal notable similar-
ities between the dry measurement and the screed damage
measurement. As discussed in the previous laboratory study
[26], the uniform screed damages were caused by an evenly
distributed moisture ingress across the entire screed sample.
Consequently, all features remain relatively constant over
the measurement distance. Such a similarity poses a risk of
misclassification between a dry floor and screed damage, a
concern also observed in the on-site data analysis (Sect. 3.1).
For distributions that are similar, the B-scan features also
appear alike, as they quantify variations through standard
deviation and range. This is demonstrated in Fig. 12, which
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heat map changing from green to red (with yellow as an intermedi-
ate color) indicates classification performances, where green represents
good accuracy and red represents poor accuracy [27]

presents a scatter plot of the key features FB and FD for
insulation damage and screed damage cases, respectively.
Insulation damage is clearly spaced along the horizontal
axis (FB) in laboratory conditions, whereas data points for
laboratory dry cases and screed damage show a similar distri-
bution, with a less distinct separation along the vertical axis
(FD). Consequently, for the laboratory training data, clas-
sifiers needed to be finely tuned to slight variations in FD

to effectively distinguish between most of the data points.
This concept is further illustratedby thehypothetical decision
boundaries depicted in Fig. 12, estimated from the classifica-
tion accuracy for both laboratory and on-site data. It can be
seen that almost all of the more variable on-site data points
lie above the defined boundary between screed and insula-
tion damage, indicating that they are likely to be classified
as screed damage.

4.2 Variability in On-Site Measurements

This section deals with the question, why the on-site data
generally show more variable B-scans than the laboratory
experiments. As noted in Sect. 3.1, this could be due to a
generally higher heterogeneity in on-site material parame-
ters, such as layer thickness or moisture content, within a
single survey line.
This hypothesis is supported by examining the layer thick-
nesses measured from all cores extracted during the investi-

gations. Figure13 and 14 summarize these thickness values
for the considered and discarded on-site investigations,
respectively. Different rooms within the buildings are identi-
fied by alternating chart background colors (grey and white).
The figures reveal that evenwithin a single room, there can be
significant variations in the thicknesses of screed and insu-
lation. Consequently, a 50cm long survey line is likely to
encounter these variations. In real-world scenarios, materi-
als like flow screed [33] or perlites [34] are often used to
even out height disparities in floor construction, leading to
these thickness variations.Unlike the controlled environment
of laboratory experiments where most parameters, including
layer thickness, remain constant, on-site measurements can
include a wide range of unknown factors. Such variability
challenges the basic assumption that deviations in B-scan
features are indicative of moisture presence.

Another unknown influence is caused by the spatial limita-
tion of the extracted cores used for reference. This becomes
particularly evident when considering the relatively small
section a core (6.8 cm diameter) covers compared to an entire
survey line (50cm). The associated difficulties were previ-
ously discussed in the context of Fig. 4 b, where a decrease
in the amplitude of the direct wave suggested an increase in
screedmoisture contentwithin theB-scan. To further analyze
such indications, examining neighboring MPs is insightful,
as demonstrated by MP 40 and MP 34 in Nürnberg (refer
to Fig. 15). MP 40, measured along survey line a), show a
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Fig. 12 Scatter plot and
hypothetical decision
boundaries of B-scan features
FB and FD for all damage cases
within laboratory data and
on-site data [27]
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referenced moisture damage for both, screed and insulation,
while MP 34, measured along survey line b), reveals an insu-
lation damage. The screed moisture content decreased from
4.8 wt% atMP 40 to 3.0 wt% atMP 34. InMP 34 survey line,
the antenna moved away from MP 40, revealing a transition
frommoist to drier screed between 15cmand25cm.The core
was positioned off center around 32cm due to limited access
available in the room. It is therefore located in the right half
of the B-scan where a decreasing travel time and increasing
amplitudes of all wave phases suggest a drier floor setup.
This survey line appears to encompass two damage scenar-

ios: screed and insulation damage (similar to MP 40) on the
left, and solely insulation damage (as referenced in MP 34)
on the right. Figure16 provides another example, showing
neighboringMPs2 and 3 inGrossenseebach.Here, the screed
moisture content declines from5.1wt% to 3.0wt%,while the
insulation remains dry for both MPs. The increasing ampli-
tude of the DW and the decreasing travel time of RW1 and
RW2 in survey line b) hint at a shift from screed damage to
a dry condition.

The ability to discriminate fine details, such as changing
moisture states, affirms the resolution and information depth
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achievable with GPR in moisture measurements. However,
this ability complicates the evaluation of the applied classi-
fication strategy. Unlike in laboratory settings, encountering
multiple damage scenarioswithin a single on-siteMP is com-
mon, which introduces significant uncertainty in classifying
an entire B-scan.

4.3 GPR Sensitivity in Damage Detection

Although the application of the automized classification
approach achieved lower accuracies, the general sensitivity
of GPR and the extracted features for the considered dam-
age cases got clear throughout the investigation. Particularly
screed damages, as shown in Figs. 6 and 16 a, provide strong
indications by influencing every regarded feature and there-
fore wave phase. In scenarios where a transition to or from
moist screed is visible, like in Figs. 15 b and 16 b, the DW

proved to be a valuable source of information, as it is unaf-
fected by changes in the underlying layer thickness. If there
is no transition visible, a general danger of confusion to a
dry floor setup remains. Here, comparing different MPs may
help identifying attenuated DWs, thereby narrowing down
areas of potential damage.
In practice, the identification of an insulation damage is even
more important, as there are no other sensitive NDT meth-
ods available. Also here, the gathered information within the
laboratory and the on-site study revealed valuable findings.
In addition to the given examples in Figs. 5 and 11, Fig. 17
showsmeasurements fromNürnberg (MP 17 andMP24) and
from a similar laboratory floor setup. The prominent devia-
tions of RW1 andRW2, captured by F2, F3 and F4, alongside
a consistently stable DW, captured by F1, are strong indi-
cators of higher moisture contents in the insulation layer.
In the laboratory, slightly visible reflection hyperbolas were

123



Journal of Nondestructive Evaluation (2024) 43 :95 Page 13 of 16 95

-2

-1.5

-1

-0.5

0

0.5

1

1.5

10
4

0

1

2

3

4

5

a bNürnberg MP 40 Nürnberg MP 34

[
e

mi
T

s
n

]

0

1

2

3

4

5

[
e

mi
T

s
n

]

F1/mean(F1)
F2/mean(F2)
F3/mean(F3)
F4/mean(F4)
F5/mean(F5)

Floor (top view)

Measurement points and

survey line orientation

MP 33MP 39

MP 34MP 40

b)a)

[
e

d
util

p
m

A
u .a

].

Meas. distance [cm]
10 20 30 40 50

Meas. distance [cm]
10 20 30 40 50

Meas. distance [cm]
10 20 30 40 50

Meas. distance [cm]
10 20 30 40 50

0

0.5

1

1.5

/er
utae

F
nae

m
)er

utae
F(

0

0.5

1

1.5
/er

utae
F

nae
m

)er
utae

F(

3.0 wt%

49.5 wt%

CT: 5.0 cm

EP: 1.5 cm

4.8 wt%

87.5 wt%

CT: 5.0 cm

EP: 1.5 cm
150 cm 300 cm

Fig. 15 B-scans and extracted A-scan features of the two neighbouring MPs 40 and 34 in Nürnberg. Survey lines orientation and MPs position are
shown on the left [27]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

10
4

0

1

2

3

4

5

a bGrossenseebach MP 2 Grossenseebach MP 3

T
im

e
[n

s]

0

1

2

3

4

5

T
im

e
[n

s]

F1/mean(F1)
F2/mean(F2)
F3/mean(F3)
F4/mean(F4)
F5/mean(F5)

Measurement points and

survey line orientation

Floor (top view)

MP 3MP 2

a) b)

A
m

p
li

tu
d

e
[a

.u
.]

Meas. distance [cm]
0 10 20 30 40 50

Meas. distance [cm]
0 10 20 30 40 50

Meas. distance [cm]
0 10 20 30 40 50

Meas. distance [cm]
0 10 20 30 40 50

5.1 wt%

5.2 wt%

CT: 7.0 cm

XP: 5.0 cm

3.0 wt%

3.8 wt%

CT: 7.0 cm

XP: 5.0 cm

0

0.5

1

1.5

F
ea

tu
re

/m
ea

n
(F

ea
tu

re
)

0

0.5

1

1.5

F
ea

tu
re

/m
ea

n
(F

ea
tu

re
)

150 cm 300 cm

Fig. 16 B-scans and extracted A-scan features of the two neighbouring MPs 2 (a) and 3 (b) in Grossenseebach. Survey lines orientation and MPs
position are shown on the left [27]

noted, resulting from small, highly moist areas, such as fully
filled insulation joints - a phenomenon also documented in
the laboratory study. The final example demonstrates that,
despite the significant differences between on-site and lab-
oratory investigations, useful parallels exist that can aid in
analyzing new, practical data. With the increased complexity
and unknown variables in on-site scenarios, a solid foun-

dation of knowledge for interpreting results becomes even
more crucial. In this context, the considered and extracted
features provide substantial support, effectively highlighting
variations within a B-scan and assisting in the challenge of
accurate interpretation.
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similar laboratory floor setup with insulation damage [27]

5 Summary and Conclusion

This study presented the use of classifiers trained by GPR
data obtained in a previous laboratory investigation to clas-
sify on-site moisture damage scenarios in layered building
floors. Five differently affected buildings had been investi-
gated for this purpose. The extraction of cores for each MP
served as a reference for material type, layer thickness, and
moisture content of both screed and insulation. Thereby, each
on-site measurement was labeled with its respective damage
scenario, which allowed a quantitative evaluation of the clas-
sifier performance.
The main findings of this study are:

• Lower classification accuracy for on-site damage cases:
Mainly attributable to a significantly higher dynamic
of all signal features extracted in on-site measurements
compared to laboratory training data.
Reasons and complicating factors are:

– Heterogeneousmaterial parameters: changes in screed
and insulation layer thicknesses within a survey line
hinder clear moisture detection.

– Varying damage cases: different damage scenarios
within a survey line complicate precise classification
and highlight the limitations of spatially restricted
moisture references.

– Narrow decision boundary in laboratory data: the
close distinction between dry floors and screed dam-
age in laboratory training data often leads tomisinter-
pretation of on-site measurements as screed damage.

• GPR sensitivity to damage scenarios:

– A detailed analysis of individual measurements show
the effectiveness of GPR in detecting moisture dam-
age scenarios.

– Integrating additional information, like results from
neighbouring measurement points, proves valuable
in eliminating unknown variables and can thereby
enhance the reliability of findings.

– Insulation damages, which often remain unrecog-
nized by other NDT methods, have displayed char-
acteristic patterns within this study.

While the proposed automated classification of moisture
damage in layered floors revealed several problems and lim-
itations, individual analysis underlined the opportunities of
the GPR method. However, the utilization of this poten-
tial still requires trained personnel assessment. The insights
gained from this study can serve as a foundation for expand-
ing the expertise of such personnel, enhancing their ability
to interpret and analyze GPR data for moisture analysis.

Giving an outlook on future developments, fully automated
approaches employing machine learning still would require
a substantially larger and more diverse data basis. For the
laboratory data, a potential approach to enrich this database
could be augmenting it by merging measurements of differ-
ent setups to simulate varying layer thicknesses of floors.
This would provide a more comprehensive range of scenar-
ios. However, it is crucial that realistic on-site data from
various scenarios are also included in the training process
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to achieve robust and valid decision boundaries. This could
either be achieved by an extensive research program or the
establishment of an open data repository for GPR and other
NDT investigations. The latter is seen as a key element,
which would enable machine learning to develop its promis-
ing potential within NDT-CE.
In all these efforts, accurate referencing of the data plays a
crucial role. Therefore, the extent of moisture-related infor-
mationmust be considerably increased, potentially involving
a combination of many procedures. The findings of this
work underlined the problem of limited local resolution in
extracted cores, wherematerial parameters and damage cases
can vary over small distances. Therefore, any limitations in
the reference data will directly be reflected in the constraints
faced by the trained classifiers, highlighting the need for
an accurate and detailed data collection. Only after solving
the aforementioned problems in the database, further stud-
ies could re-evaluate and optimize the proposed method with
respect to the applied signal features and the classification
models used.
Other challenges encountered in this work also provide
opportunities for future research. A key issue was the pres-
ence of underfloor heating, which, based on the recorded
measurements, provides insight into the moisture content of
the screed. The pronounced reflection hyperbolas observed
offer potential for the development of additional features that
would allow a more accurate assessment of the radar wave’s
propagation speed. For this scenario, a laboratory investiga-
tion would be beneficial to understand critical parameters
such as pipe spacing, their dimensions and materials.
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